Abstract

The characteristics of the thermal field in the human nasal cavity during the expiration period were investigated using computational fluid dynamics. Heat and water-vapor recovery features were quantitatively investigated under realistic distributions of the epithelial surface and air temperature. A constant expiratory flow rate of 250 mL/s was assumed.The epithelial surface temperature was approximately 34.3–34.4 °C in the nasopharynx and 33.5–33.6 °C in the vestibule region, and these values are in good agreement with the measurement data in the literature. We observed that heat-recovery from the exhaled air mostly occurred in the posterior turbinate region, and the amount of heat recovered is estimated to be approximately 1/3 of the heat supply during inspiration. Because of this heat transfer from the exhaled air to the epithelial surface, the temperature of the epithelial surface increased in this region, and the exhaled air temperature dropped through the turbinate airway.Water-vapor recovery primarily occurs in the posterior segments of the turbinates; however, the amount of water-vapor transfer was approximately 1/5 of that in inspiration. Accordingly, the relative humidity of the exhaled air remained constant throughout the airway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call