Abstract

To gain a better understanding of nanoparticle exposure in human nasal cavities, laboratory animals (e.g. rat) are used for in vivo studies. However, due to anatomical differences between human and rodent nasal cavities, direct particle deposition comparisons between species are difficult. This paper presents a comparative nanoparticle (1 nm, 10 nm, and 100 nm) deposition study using anatomically realistic models of a human and rat nasal cavity. The particle deposition fraction was highest consistently in the main nasal passage, for all nanoparticles tested, in the human model; whereas this was only the case for 10 nm, and 100 nm particles for the rodent model, where greater deposition was found in the anterior nose for 1 nm particles. A deposition intensity (DI) term was introduced to represent the accumulated deposition fraction on cross-sectional slices. A common and preferential deposition site in the human model was found for all nanoparticles occurring at a distance of 3.5 cm inside the nasal passage. For the rodent model maximum DI occurred in the vestibule region at a distance of 0.3 cm, indicating that the rodent vestibule produces exceptionally high particle filtration capability. We also introduced a deposition flux which was a ratio of the regional deposition fraction relative to the region's surface area fraction. This value allowed direct comparison of deposition flux between species, and a regional extrapolation scaling factor was found (e.g. 1/10 scale for vestibule region for rat to human comparison). This study bridges the in vitro exposure experiments and in vivo nanomaterials toxicity studies, and can contribute towards improving inter-species exposure extrapolation studies in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call