Abstract

Tape automated bonding (TAB) is a widely used interconnection technology for high-pincount and fine-pitch IC packaging. In this study, a three-dimensional computational model was developed for analyzing TAB inner lead bonding (ILB) process. This experimental study on the thermomechanical properties of copper leads was achieved using high precision micro-force tensile tests. A stress–stain relation between the copper lead and different temperature ranges was successfully implemented into the finite element model to study large plastic deformation in ILB formation. The resulting ILB lead profile and bump sinking values obtained from the simulations agreed well with the experimental observations from actual manufacturing data with the same bonding parameters. The tool position and lead length effects are analyzed to study the residual stress distribution after ILB. A 10-lead model was developed to study how the tool tip profile and planarity ‘angle affect the co-planarity between the bonding tool and the stage. The numerical results show that the permissible tool profile variance should not exceed 1.25 μm and the acceptable planarity angle is 0.005° to achieve the minimum bump deformation requirement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.