Abstract

Abstract One of the methods to avoid rolling contact fatigue is to reduce the film pressure due to surface roughness and the magnitude of its fluctuation. The roughness on rolling/sliding concentrated contacting surfaces has generally different asperity heights. In this study, it has been clarified, using a fully flooded non-Newtonian thermal elastohydrodynamic lubrication analysis in contact between materials with different thermal conductivities and roughness asperity heights, which surface velocity should be increased and which roughness asperity height should be lowered to reduce the magnitudes of film pressure and its fluctuation. The results obtained will make a new contribution to the combination of roughness heights on the EHL contact surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call