Abstract

Abstract The interaction and surface features between point contact surfaces composed of longitudinal roughness with infinite or finite length and transverse roughness were discussed based on a transient non-Newtonian thermal elastohydrodynamic lubrication (EHL) model. Each surface shape is greatly affected by the difference in elastic moduli, thermal conductivities, and velocities of both contact surfaces. There is a large difference in pressure behavior when the transverse roughness is in contact with the longitudinal roughness with finite length and when it is in contact with the longitudinal roughness with infinite length. In the contact between surfaces with infinitely long longitudinal and transverse roughness, the friction coefficient is lower when the surface with longitudinal roughness has a low thermal conductivity than when it has a high thermal conductivity. Furthermore, the pressure fluctuation is larger when the transverse roughness surface has a high thermal conductivity than when it has a low thermal conductivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.