Abstract

This paper describes the numerical results of electrical, thermal and mechanical properties in a model current limiting device with QMG bulk superconductor reinforced by various kinds of metal bypass. The electric circuit analysis for simulation of current sharing is coupled at each time step with the finite difference method to calculate the temperature distribution inside the device. The obtained results are compared with experimental data carried out previously, and they have a good agreement with each other. The profile of internal stress in the limiting devices is also estimated by means of a commercial code of finite element analysis, and it is concluded that the magnitude of mechanical stress applied to the superconductor is less than an allowable level for each model device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.