Abstract
The energy loss of the multi-stage centrifugal pump was investigated by numerical analysis using the entropy generation method with the RNG k-ε turbulence model. Entropy generation due to time-averaged motion and velocity fluctuation was mainly considered. It was found that the entropy generation of guide vanes and impellers account for 71.2% and 23.3% of the total entropy generation under the designed flow condition. The guide vanes are the main hydraulic loss domains and their entropy generation is about 9 W/K, followed by impellers. There are vortices at the tongue of the guide vane inlet as well as flow separations in the impellers, which lead to entropy generation. The fluid impacts the outer surface of the guide vanes, resulting in the increase in entropy generation. There are refluxes near the guide vane tongues which also increase the entropy generation of this part. The entropy generation distribution of the guide vanes and impellers was investigated, which found that the positive guide vane has more entropy generation compared with the reverse guide. The entropy generation of the blade suction surface is higher compared with the pressure surface. This study indicated that the entropy generation method has distinct advantages in the assessment of hydraulic loss.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.