Abstract

Turbulent heat transfer to air flow in annular pipe with sudden contraction numerically studied in this paper. The k-ε model with finite volume method used to solve continuity, moment and energy equations. The boundary condition represented by uniform and constant heat flux on inner pipe with range of Reynolds number varied from 7500 to 30,000 and contraction ratio (CR) varied from 1.2 to 2. The numerical result shows increase in local heat transfer coefficient with increase of contraction ratio (CR) and Reynolds number. The maximum of heat transfer coefficient observed at contraction ratio of 2 and Reynolds number of 30,000 in compared with other cases. Also pressure drop coefficient noticed rises with increase contraction ratio due to increase of recirculation flow before and after the step height. In contour of velocity stream line can be seen that increase of recirculation region with increase contraction ratio (CR).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call