Abstract

Numerical solutions for the steady axisymmetric flow through a disk-type prosthetic heart valve were obtained for Reynolds numbers from 20 to 1300. Stream function, vorticity, and shear and normal stress plots are presented. Comparison of the length of the separated flow region downstream of the disk with experimental data shows good agreement through Reynolds number 500. The maximum value of the shear stress occurred on the upstream corner of the disk. These detailed results clearly identify regions of very high shear and normal stresses (erythrocyte deformation or damage), regions of very low or very high shear stress at walls (atheromatous lesions), and the extent of separated or reverse flow regions (thrombosis).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.