Abstract

We consider the nonlinear Schrödinger equation with a logarithmic nonlinearity and a repulsive harmonic potential. Depending on the parameters of the equation, the solution may or may not be dispersive. When dispersion occurs, it does with an exponential rate in time. To control this, we change the unknown function through a generalized lens transform. This approach neutralizes the possible boundary effects, and could be used in the case of the nonlinear Schrödinger equation without potential. We then employ standard splitting methods on the new equation via a nonuniform grid, after the logarithmic nonlinearity has been regularized. We also discuss the case of a power nonlinearity and give some results concerning the error estimates of the first-order Lie-Trotter splitting method for both cases of nonlinearities. Finally extensive numerical experiments are reported to investigate the dynamics of the equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.