Abstract

In this paper, exact solutions of semilinear equations having exponential growth in the space variable x are found. Semilinear Schrödinger equation with logarithmic nonlinearity and third-order evolution equations arising in optics with logarithmic and power-logarithmic nonlinearities are investigated. In the parabolic case, the solution u is written as u=be−ax2, a<0, a,b being real-valued functions. We are looking for the solutions u of Schrödinger-type equation of the form u=be−ax22, respectively, for the third-order PDE, u=AeiΦ, where the amplitude b and the phase function a are complex-valued functions, A>0, and Φ is real-valued. In our proofs, the method of the first integral is used, not Hirota’s approach or the method of simplest equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.