Abstract
The effect of laminar flame speed on the flame dynamics in two-dimensional half open tubes is investigated through a two-dimensional laminar combustion model. Several single-step reaction mechanisms are established to alter the corresponding laminar flame speed. The simulation results show that the similarity of flame propagation only holds during the acceleration phase. In the flame acceleration phase, the flame shape and flame tip position corresponding to each dimensionless moment are almost the same. This similarity gradually disappears after the flame touches the wall. When the flame decelerates, the periodic oscillation of the flame tip velocity is related to the laminar flame speed. The higher the laminar flame speed, the longer the corresponding dimensionless oscillation period. The destruction of this similarity is also reflected in the correlation between the flame surface area and the growth rate of burnt gas volume. In addition, the dimensionless evolution correlation of the flame surface area during the acceleration phase is given in this paper. The moving speed of the flame skirt at different laminar flame speeds and the time interval of flame inversion in the two-dimensional half open tubes are also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.