Abstract

The development stages of a small-scale fire whirl including the ignition, flame-rising and fully-developed whirling were successfully captured by a fire field model. Good agreements between simulation and experimental results for vertical temperature profiles and flame height were achieved. With the consideration of the interaction between the liquid and gas phases of the fuel, the radiation heat feedback towards the liquid fuel was aptly predicted. Angular velocities that govern the rotational motion of the fire whirl were evaluated based on computed data. Furthermore, the circulate motion and buoyancy force promoting the extension of flame height were characterised in numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.