Abstract

A numerical study of the nano-indentation of the AZ31 alloy was performed in order to analyze the stress fields at the onset of twinning. The model considers indentation of the (101¯0) and (12¯10) planes by a spherical indenter with radii of 5, 10 and 50μm. Material behavior is described by a crystal plasticity constitutive model with three critical resolved shear stresses for different slip modes. The CRSS values were obtained by fitting to experimental load-displacement curves. The stress and strain distributions are analyzed with a view to understanding twin initiation. The twins initiate during indentation at the stress level order of magnitude higher compare to uniaxial tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.