Abstract
The finite–element method is used to perform an accurate numerical study of the normal indentation of an elastic–plastic half–space by a rigid sphere. The effects of elasticity and strain–hardening rate of the half–space are explored, and the role of friction is assessed by analysing the limiting cases of frictionless contact and sticking friction. Indentation maps are constructed with axes of contact radius a (normalized by the indenter radius R and the yield strain of the half–space. Competing regimes of deformation mode are determined and are plotted on the indentation map: (i) elastic Hertzian contact; (ii) elastic–plastic deformation; (iii) plastic similarity regime; (iv) finite–deformation elastic contact; and (v) finite–deformation plastic contact. The locations of the boundaries between deformation regimes change only slightly with the degree of strain–hardening rate and of interfacial friction. It is found that the domain of validity of the rigid–strain–hardening similarity solution is rather restricted: it is relevant only for solids with a yield strain of less than 2 x 10 −4 and a / R
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.