Abstract

Two-dimensional unsteady cavity flow through a cascade of hydrofoils is numerically calculated. Particular attention is focused on instability phenomena of a sheet cavity in the transient cavitation condition, and the mechanism of the breakoff phenomenon is examined. TVD-MacCormack’s scheme employing a locally homogeneous model of compressible gas-liquid two-phase medium is applied to analyze the cavity flows. The present method permits us to treat the entire cavitating/noncavitating unsteady flowfield. By analyzing the numerical results in detail, it becomes clear that there are at least two mechanisms in the breakoff phenomenon of the sheet cavity: one is that re-entrant jets play a dominant role in such a breakoff phenomenon, and the other is that pressure waves propagating inside the cavity bring about another type of breakoff phenomenon accompanying with cavity surface waves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call