Abstract

In this study, nanofluid natural convection in a baffled U-shaped enclosure in the presence of a magnetic field is investigated. Lattice Boltzmann method (LBM) is used to study present problems. KKL (Koo-Kleinstreuer-Li) correlation is applied to calculate the effective thermal conductivity and viscosity of nanofluid. The effect of the Brownian motion on the effective thermal conductivity is considered in this correlation. The combination of the four topics (nanofluid, U-shaped enclosure, baffle, magnetic field) is the main novelty of the present study. Effect of Rayleigh number, Hartmann number, nanoparticle volume fraction and cavity aspect ratio on the flow field and heat transfer characteristics have been investigated. The results demonstrate that the average Nusselt number increases by increments of the Rayleigh number, nanoparticle solid volume fraction and aspect ratio. However, the rate of heat transfer is suppressed by the magnetic field. The effect of magnetic field on heat transfer is more significant at higher Rayleigh number and the effect of Ra on the average Nusselt number is more noteworthy at lower Ha. Besides, the effect of Rayleigh number on heat transfer enhancement becomes more significant at higher aspect ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.