Abstract

The third-order accurate upwind compact difference scheme has been applied for the numerical study of the magnetic reconnection driven by a plasma blob impacting the heliospheric current sheet, under the framework of the two-dimensional compressible magnetohydrodynamics. The results show that the driven reconnection near the current sheet could occur in about 10–30 min for the interplanetary high magnetic Reynolds number, R M = 2000–10,000, a stable magnetic reconnection structure can be formed in hour order of magnitude, and there appear some basic properties such as the multiple X-line reconnections, vortex structures, filament current systems, splitting and collapse of the high-density plasma blob. These results are helpful in understanding and identifying the magnetic reconnection phenomena possibly occurring near the heliospheric current sheets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call