Abstract

A phenomenological (mean-field) mathematical model of unimolecular reactions proceeding onto inhomogeneous planar surfaces is presented and investigated numerically in two-dimensional in space case taking into account the adsorption and desorption of reactant particles, long-range surface diffusion of the adsorbed particles, and an instantaneous product desorption from an adsorbent. The model also involves the bulk diffusion of the reactant from the bounded vessel towards the adsorbent and the product bulk one from the adsorbent into the same vessel. Simulations were performed using the finite difference technique. The influence of the long-range surface diffusion of adsorbed particles on the kinetics for processes catalyzed by inhomogeneous surfaces with a different arrangement of reactive and non-reactive adsorption sites is studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.