Abstract

The fully developed laminar incompressible flow inside a curved duct of elliptical cross-section with four thin, internal longitudinal fins is studied using the improved CVP method. We present numerical results for the friction factor and an investigation of the effect of the fin height and the Dean number on the flow. It is found that the friction factor increases for large fins and for high Dean numbers and that in some cases, it has a strong dependence on the cross-sectional aspect ratio. The thermal results show that the heat transfer rate is enhanced by the internal fins and that it depends on the aspect ratio.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.