Abstract

In this article, we propose a practical and highly efficient finite difference approach for two-phase fluid simulations on three-dimensional (3D) surfaces. The hydrodynamically coupled interfacial motion is captured by using the conservative Allen–Cahn–Navier–Stokes (CACNS) equations. By adopting the closest point method and the pseudo-Neumann boundary condition, the direct computations on curved surfaces are transferred to the 3D simulations in a narrow band domain embedding the surface. The projection method with pressure correction is used to decouple the computations of velocity and pressure. The operator splitting method is used to split the calculation of conservative Allen–Cahn equation into subproblems and the nonlinear part can be analytically solved. Therefore, the whole computation in each time iteration is highly efficient and easy to implement. The numerical experiments on various 3D curved surfaces are investigated to show the good performance of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.