Abstract

A numerical model is introduced in this paper to investigate both global and local ice loads on ship hulls. This model is partly based on empirical data, by which the observed phenomena of continuous icebreaking can be well reproduced. In the simulation of a full-scale icebreaking trial, the interdependence between the ice load and the ship’s motion is considered, and the three degree-of-freedom rigid body equations of surge, sway and yaw are solved by numerical integration. The variations in the level ice thickness and in the strength properties of ice can also be taken into account. The simulated ice loads on ship hulls are discussed through two case studies, in which the ship’s performance, the statistics of ice-induced frame loads, and the spatial distribution of ice loads around the hull are analyzed and compared with field measurements. As far as we know the present paper is the first to integrate all the features above. It is hoped that further studies on this numerical model can supplement the field and laboratory measurements in establishing a design basis for the ice-going ships especially for ships navigating in the first-year ice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call