Abstract
Although the use of Geosynthetic Reinforced Soil (GRS) bridge abutments has been increasing, the seismic performance of such structures has remained a significant concern due to their unknown behavior in load-bearing and stress distribution under bridge load and seismic conditions simultaneously. This paper investigates the static and dynamic response of GRS bridge abutment. A series of numerical models representing the realistic field conditions of these structures, including two reinforced soil walls and a single span deck that restrains the top of walls, rather than equivalent surcharge load, was developed. The calibrated numerical model in FLAC program was used to evaluate the effects of horizontal restraint from the deck on the GRS wall displacements and reinforcement loads at the end of construction and under harmonic base acceleration up to 0.5 g. Results indicated that the restraint mobilized from the bridge deck presence, considerably affected the results at both the end of construction and after the dynamic load was applied. Moreover, a series of the parametric studies were performed to investigate the influences of backfill soil relative compaction, reinforcement stiffness, reinforcement length, and reinforcement vertical spacing on the response of GRS abutments at the end of construction and post dynamic state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.