Abstract

The present paper is the study of boundary layer flow and heat transfer of Power law fluid flowing over a vertical exponentially stretching cylinder along its axial direction. The governing partial differential equations and the associated boundary conditions are reduced to nonlinear ordinary differential equations after using the boundary layer approximation and similarity transformations. The obtained system of nonlinear ordinary differential equations subject to the boundary conditions is solved numerically with the help of Fehlberg method. The effects of Power law index , Reynolds number , Prandtl number , the natural convection parameter and local Reynolds number are presented through graphs. The skin friction coefficient and Nusselt number are presented through tables for different parameters.The present paper is the study of boundary layer flow and heat transfer of Power law fluid flowing over a vertical exponentially stretching cylinder along its axial direction. The governing partial differential equations and the associated boundary conditions are reduced to nonlinear ordinary differential equations after using the boundary layer approximation and similarity transformations. The obtained system of nonlinear ordinary differential equations subject to the boundary conditions is solved numerically with the help of Fehlberg method. The effects of Power law index , Reynolds number , Prandtl number , the natural convection parameter λ and local Reynolds number Rea are presented through graphs. The skin friction coefficient and Nusselt number are presented through tables for different parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.