Abstract

Thermoelastic waves propagating in an isotropic thin plate exerted by a uniaxial tensile stress are represented in this work. Characteristic equation of guided thermoelastic waves is formulated based on the theory of acoustoelasticity and classical thermoelasticity. Curve-tracing method for complex root finding is used to determine the attenuation, which is the imaginary part of the complex-value wavenumber. It is found that each plate mode of thermoelastic wave propagating in an isotropic plate with or without prestress has a minimum attenuation at a specific frequency except the A0 mode. These modes are called the Lamé modes, which are the volume resonances in the thickness direction and propagate along the plate with the least energy dissipation. Frequency spectra of the phase velocity dispersion and attenuation of thermoelastic waves propagating along various orientations in the uniaxial prestressed thin plate have further been discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.