Abstract

A convection-diffusion reaction scheme is applied to solve the transient transport equations for the prediction of steady electro-osmotic microchannel flow behavior. The governing equations for the total electric field include the Laplace equation for the effective electrical potential and the Poisson-Boltzmann equation for the electrical potential established in the electric double layer. The transport equations governing the hydrodynamic field variables comprise mass conservation equation for the electrolyte and equations of motion for the incompressible charged fluid flow subject to an electro-osmotic body force. The main aim of the study is to elucidate the effect of Joule heating, which can affect the electrohydrodynamic behavior. Investigation into the region near the negatively charged channel wall is made through the simulated velocity boundary layer, diffuse layer, and electric double layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.