Abstract
The aluminum agglomerate size distribution plays an important role in influencing the particle distributed combustion in motor, which subsequently affects the performance of solid rocket motor significantly. In this work, a three-phase model to describe distributed combustion of aluminum agglomerates is established based on the Eulerian-Lagrangian method. Then, the agglomerate size, including mono size and distributed size, is studied to reveal its effect on aluminum combustion and motor flow field. The simulated results indicate that the increasing agglomerate mono size observes the obvious decrease of the average temperature inside the motor combustion chamber, implying the low combustion efficiency of large agglomerate size. When considering the agglomerate size distribution, the size distribution mode and the mean size D43 determine the combustion efficiency together. In particular, even the mean size is similar, with different distribution mode, like skewed distribution, bimodal or trimodal distribution, the combustion efficiency and flow field parameters are nonnegligible different. However, when the size distribution mode is the same and the peak range is similar, the mean size D43 becomes the only and predominant factor as the mono size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.