Abstract

The distribution and evolution of air in airliner cabins is an important basis for the study of cabin thermal environment and pollutant propagation. Due to the complex heat and mass transfer problems caused by forced and natural convection in a large-scale space, the accurate prediction of air distribution in airliner cabins still faces huge challenges. This study takes the cabin of the Airbus A320 as the research object. The accurate numerical simulation of the flow and heat transfer process in an airliner cabin under mixing ventilation mode was carried out using the Hybrid Thermal Lattice Boltzmann Method (HTLBM) combined with GPU (Graphics Processing Unit) acceleration technology, and the influence of human thermal plumes on air distribution and evolution characteristics in an airliner cabin was analyzed. The research shows that the human thermal plume changes the air distribution in the passenger cabin. The thermal plume slows down the jet attenuation, increases the energy exchange in the area near the passengers, and offsets the jet trajectory. The airflow self-locking effect is easier to form in the passenger breathing area, which increases the time for the flow field to develop into the steady state. The influence of human thermal plumes on the airflow distribution in the passenger cabin cannot be ignored.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call