Abstract

Predicting influence of human thermal plume on the diffusion of respiration-produced particles is an important issue for improving indoor air quality through eliminating infectious microbes efficiently. In this study, the Large Eddy Simulation was utilized to predict the effects of thermal plume of different intensities on particle diffusion. Three postures of the human body model and three room temperatures were considered. The results show that the convective heat transfer coefficient on the surface of the human body varies greatly with different postures. The coefficient is the largest when the model is in sitting posture, leading to the greatest heat transfer rate. Meanwhile, the thermal plume generated by bending the thigh increases the size of the facial thermal plume in horizon direction. The increase of the difference between indoor temperature and skin temperature causes an increase of the convective heat transfer of the manikin, leading to stronger airflow in front of the face. The thicker and faster the human thermal plume is, the more difficult it is penetrated by aerosols produced by nasal breathing, finally resulting in most particles distributed within 0.2 m thick under the roof.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.