Abstract

The advantages of a (0001) face GaN/InGaN p-i-n solar cell with compositional grading configuration between i-InGaN/p-GaN layers are studied numerically. With the use of the grading layer, the conversion efficiency is markedly promoted due to the reduction of potential barrier height for holes and due to the decrease of polarization. Optimized conversion efficiency is obtained when the thickness of the grading layer increases to a critical value. This critical thickness is strongly influenced by the polarization charges and doping concentration of the grading layer. When the density of the polarization charges is high or the doping concentration is low, a thick grading layer is required to achieve high efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.