Abstract

A 9 m high, near full scale three-storey configurable steel frame composite floor building incorporating friction-based connections is to be tested using two linked bi-directional shake tables at the International joint research Laboratory of Earthquake Engineering (ILEE) facilities, Shanghai, China, as part of the RObust BUilding SysTem (ROBUST) project. A total of nine structural configurations are designed and detailed. To have a better understanding of the expected system behaviour, as well as effects of other structural and non-structural elements (NSEs) on the overall system response, experimental testing at component level has been conducted prior to the shake table testing. This paper presents an introduction to the ROBUST project, followed by a numerical study on one of the nine configurations of the structure, having Moment Resisting Steel Frame (MRSF) in the longitudinal direction and Concentrically Braced Frame (CBF) in the transverse direction. Hysteretic properties employed in the numerical models are validated against component test results. The predictions of the building's seismic response under selected base excitations are presented indicating the likely low damage performance of the structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.