Abstract

Increase in the consumption of electrical energy worldwide has laid the emphasis on replacing electrical energy with thermal energy wherever possible. In this paper, the bubble pump, which is ‘heart’ of diffusion- absorption refrigeration system, has been investigated numerically. A thermally driven bubble pump, which can be powered by waste heat or solar thermal energy, is used to lift the liquid. As a result of the absence of any mechanical moving part, the refrigerator is silent and very reliable in addition to aneconomicalandenvironmental friendlydevice. The concept of such a pump is already in existence but optimization studies are yet to be extensively investigated. This paper deals with the optimization of various parameters of the bubble pump usingwateras the working fluid. Parametric studies are carried out and a design optimization for maximum efficiency is performed for various operating conditions.Numerical simulation of the bubble pump is carried out using simple numerical equations which assume slug flow in the bubble pump. The diameter of the pipe and the position of the heating element are varied and the effect it has on time taken, pumping ratio and pumping ratio for one pumping cycle is studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call