Abstract

The experimental configuration in [M. Asai, M. Minagawa, M. Nishioka, The instability and breakdown of a near-wall low-speed streak, J. Fluid Mech. 455 (2002) 289–314] is numerically reproduced in order to examine the instability of a single low-speed streak in a laminar boundary layer and to investigate the resulting generation of coherent structures. Such a configuration is chosen since the experimental data show that the two instability modes, varicose and sinuous, are of comparable strength. The instability characteristics are retrieved from the simulation of the flow impulse response. The varicose instability is associated to higher frequencies and lower group velocities than those of the sinuous modes. The latter are less affected by the diffusion of the streak mean shear and are amplified for a longer streamwise distance. Analysis of the perturbation kinetic energy production reveals that both the varicose and the sinuous instability are driven by the work of the Reynolds stress against the wall-normal shear of the streak. The base flow considered here therefore presents an exception to the common knowledge, supported by several previous studies, that the sinuous instability is associated to the streak spanwise shear. The vortical structures at the late stage of the varicose breakdown are identified from the numerical data. By comparing them with those pertaining to other transition scenarios, it is confirmed that streaks and streamwise vortices are universal features of boundary layer transition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call