Abstract

A novel optical-induced dielectrophoresis (ODEP) method employing a pressure-driven flow for the continuous separation of microparticles is presented in this study. By applying alternate current electric field on conductive indium tin oxide substrate and projecting the light geometry into the photoconductive layer, an inhomogeneous electric field is locally induced. The particles experience the dielectrophoretic force when passing through the lighting area, where the strongest electrical field gradient exists. By optimizing the structure of the lighting pattern, a stronger nonuniform electric field gradient is generated which predicts the separation of 1 and 3µm polystyrene particles. Moreover, the effects of key parameters, including the light pattern geometry, applied voltage, and flow rate, were investigated in this study, leading to the successful sorting of 700nm and 1µm particles. To further examine the separation sensitivity and practicability of the proposed ODEP microfluidic method, the isolation of two different types of circulating tumor cells from T-cells and red blood cells are demonstrated, providing a novel method for the manipulation and separation of microparticles and nanoparticles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.