Abstract

The magnetic bearing is considered as one of the most prospective applications of high temperature superconductors (HTSs) which can realize stable levitation in a magnetic field generated by permanent magnet devices or coils. The exploration of this kind of HTS bearing through numerical investigation is usually made by assuming the induced current circulates only within the ab-plane and thus simplifying the actual three-dimensional problem to a two-dimensional one. In this paper, on the basis of the three-dimensional model of the HTS bulk established before, we further introduce the developed finite-element software to calculate the magnetic field generated by a magnetic rotor which is composed of permanent magnet (PM) rings and ferromagnet (FM) shims, and in this way, we can investigate the magnetic forces (radial force and axial force) of a simplified HTS bearing model, i.e., two symmetric HTS bulks and a magnetic rotor, at a three-dimensional level. The investigations performed in this paper lead to the observations: the favorable configuration to construct the HTS bearing is that the axial height of each HTS element should be equivalent to the axial heights of PM ring plus FM shim; the increase of the radial thickness of PM ring will improve both the radial force and the axial force considerably, but its margin decreases; the enhancement of critical current density of HTSs due to the decrease of operating temperature can result in a higher increase of both the radial and axial force with a lower nominal gap between the HTSs and the magnetic rotor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.