Abstract

To avoid finding the stationary distributions of stochastic differential equations by solving the nontrivial Kolmogorov–Fokker–Planck equations, the numerical stationary distributions are used as the approximations instead. This paper is devoted to approximate the stationary distribution of the underlying equation by the Backward Euler–Maruyama method. Currently existing results (Mao et al., 2005; Yuan et al., 2005; Yuan et al., 2004) are extended in this paper to cover larger range of nonlinear SDEs when the linear growth condition on the drift coefficient is violated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.