Abstract

Few papers look at the asymptotic boundedness of numerical solutions of stochastic differential equations (SDEs). One of the open questions is whether numerical approximations can reproduce the boundedness property of the underlying SDEs. In this paper, we give positive answer to this question. Firstly we discuss the asymptotic moment upper bound of the Itô type SDEs and show that the Euler–Maruyama (EM) method is capable to preserve the boundedness property for SDEs with the linear growth condition on both drift and diffusion coefficients. But under the weaker assumption, the one-sided Lipschitz, on the drift coefficient, the EM method fails to work. We then show that the backward EM method can work in this situation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.