Abstract

This paper is concerned with finite difference solutions of a coupled system of nonlinear reaction-diffusion equations. The investigation is devoted to the finite difference system for both the time-dependent problem and its corresponding steady-state problem. The existence and uniqueness of a non-negative finite difference solution and three monotone iterative algorithms for the computation of the solutions are given. It is shown that the time-dependent problem has a unique non-negative solution, whereas the steady-state problem may have multiple non-negative solutions depending on the parameters in the problem. The different non-negative steady-state solutions can be computed from the monotone iterative algorithms by choosing different initial iterations. Also discussed is the asymptotic behaviour of the time-dependent solution in relation to the steady-state solutions. The asymptotic behaviour result gives some conditions ensuring the convergence of the time-dependent solution to a positive or semitrivial non-negative steady-state solution. Numerical results are given to demonstrate the theoretical analysis results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call