Abstract
This paper addresses a computational technique for solving 2D unsteady Navier–Stokes equations (NSEs) with time-fractional order in the Caputo sense in the formulation of stream function-vorticity. The finite difference-based method of lines is used to discretize the time-fractional NSEs on a collocated grid that construct a fractional differential algebraic equations system. After solving the discretized complementary Poisson’s equation, this system is reduced to a system of fractional differential equations (FDEs). The resulting FDEs are solved by fractional backward differentiation formulas. The flow in a square lid-driven cavity is considered as the model problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.