Abstract
The numerical solution of the complete power flow equation is reported and employed to investigate the state of mode coupling along a step-index plastic optical fiber. This solution is based on the explicit finite-difference method and, in contrast to earlier solutions, does not neglect absorption and scattering loss. It is the only solution that can accommodate any input condition throughout the entire range of feasible input angles without the need for restriction to those angles that are sufficiently far away from critical. Our results for the field patterns at different locations along one type of fiber are in agreement with reported measurements earlier. Furthermore, the length of fiber required for achieving a steady-state mode distribution matches the analytical solution that is available for such distribution as a special case. Mode coupling in plastic fibers is known to affect fiber-optic power delivery, data transmission, and sensing systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have