Abstract

Finite element and finite difference methods have been widely used, among other methods, to numerically solve the Fokker–Planck equation for investigating the time history of the probability density function of linear and nonlinear 2d and 3d problems; also the application to 4d problems has been addressed. However, due to the enormous increase in computational costs, different strategies are required for efficient application to problems of dimension ≥3. Recently, a stabilized multi-scale finite element method has been effectively applied to the Fokker–Planck equation. Also, the alternating directions implicit method shows good performance in terms of efficiency and accuracy. In this paper various finite difference and finite element methods are discussed, and the results are compared using various numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.