Abstract

We consider the ‘classical’ Boussinesq system of water wave theory, which belongs to the class of Boussinesq systems modelling two-way propagation of long waves of small amplitude on the surface of water in a horizontal channel. (We also consider its completely symmetric analog.) We discretize the initial-boundary-value problem for these systems, corresponding to homogeneous Dirichlet boundary conditions on the velocity variable at the endpoints of a finite interval, using fully discrete Galerkin-finite element methods of high accuracy. We use the numerical schemes as exploratory tools to study the propagation and interactions of solitary-wave solutions of these systems, as well as other properties of their solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.