Abstract
We consider the ‘classical’ Boussinesq system in one space dimension and its symmetric analog. These systems model two-way propagation of nonlinear, dispersive long waves of small amplitude on the surface of an ideal fluid in a uniform horizontal channel. We discretize an initial-boundary-value problem for these systems in space using Galerkin-finite element methods and prove error estimates for the resulting semidiscrete problems and also for their fully discrete analogs effected by explicit Runge-Kutta time-stepping procedures. The theoretical orders of convergence obtained are consistent with the results of numerical experiments that are also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.