Abstract
We develop a new approach for solving stochastic quantum master equations with mixed initial states. First, we obtain that the solution of the jump-diffusion stochastic master equation is represented by a mixture of pure states satisfying a system of stochastic differential equations of Schrödinger type. Then, we design three exponential schemes for these coupled stochastic Schrödinger equations, which are driven by Brownian motions and jump processes. Hence, we have constructed efficient numerical methods for the stochastic master equations based on quantum trajectories. The good performance of the new numerical integrators is illustrated by simulations of two quantum measurement processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.