Abstract

Many projectiles tend to spin about their longitudinal axis while progressing in the forward direction. It helps in providing stability and a reference direction for guidance during their run. Many different projectiles employ a supersonic convergent-divergent nozzle to produce thrust for their forward motion; hence, the nozzle and overall whole propulsion system tend to spin about its axis of rotation. The main aim of this study is to observe the effect of spin on the nozzle. In this research, a converging bell-shaped diverging nozzle is numerically designed using a method of characteristics (MOC) for exit Mach number 3.21. Viscous simulations are performed for both two- and three-dimensional cases. The analysis is then performed with nozzle spinning about its axis of symmetry with a constant angular velocity of 10 revolutions per second. The analysis is repeated for the value of constant angular velocities to be 15 and 20 revolutions per second, and the behavior of flow with increasing angular velocity is examined. It has been observed that the exit Mach number and velocity decrease due to the radial protrusion of the boundary layer, and it has a negative impact on the performance of the nozzle. Moreover, the decrease of exit Mach number is in direct relation to increasing angular velocity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call