Abstract
ABSTRACT This work aims is to study a nonlinear second-order boundary value differential elliptic problem in one dimension where the nonlinearity concerns the solution and its first derivative. We assume that the source term can be non-smooth and the nonlinearity can grow faster than quadratic. First, we show the existence of a non-negative weak solution if we assume the existence of a super-solution. Second, we present a numerical algorithm to compute an approximation of the non-negative weak solution. The proposed algorithm is decomposed in two steps, the first one is devoted to computing a super-solution, and in the second one, the algorithm computes a sequence of solutions of an intermediate problem obtained by using the Yosida approximation of the nonlinearity. This sequence converges to the non-negative weak solution of the nonlinear equation. The numerical method is an application of the Newton method to the discretized version of the problem, but at each iteration, the resulting system can be indefinite. To overcome this difficulty, we introduce an adaptive non-overlapping domain decomposition method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.