Abstract
AbstractIn this paper, a new method for the numerical solution of fractional sine-Gordon (SG) equation is presented. Our method consists of two steps, in first step: the main equation is converted to a homogeneous one using interpolation. In second step: two-dimensional approximation of functions by shifted Jacobi polynomials is used to reduce the problem into a system of nonlinear algebraic equations. The archived system is solved by Newton’s iterative method. Our method is stated in general case on rectangular [a,b] × [0,T] which is based upon Jacobi polynomial by parameters (α,β). Several test problems are employed and results of numerical experiments are presented and also compared with analytical solutions. Also, we verify the numerical stability of the method, by applying a disturbance in the problem. The obtained results confirm the acceptable accuracy and stability of the presented method.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have