Abstract

This paper aims at the application of an optimized two-step hybrid block method for solving boundary value problems with different types of boundary conditions. The proposed approach produces simultaneously approximations at all the grid points after solving an algebraic system of equations. The final approximate solution is obtained through a homotopy-type strategy which is used in order to get starting values for Newton’s method. The convergence analysis shows that the proposed method has at least fifth order of convergence. Some numerical experiments such as Bratu’s problem, singularly perturbed, and nonlinear system of BVPs are presented to illustrate the better performance of the proposed approach in comparison with other methods available in the recent literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.