Abstract

Abstract We follow up on our systematic study of axisymmetric hydrodynamic simulations of protoplanetary nebula. The aim of this work is to generate the atomic analogues of the H2 near-infrared models of Paper I with the ZEUS code modified to include molecular and atomic cooling routines. We investigate stages associated with strong $\mathrm{[Fe\, {\small II}] \, 1.64\, \mathrm{\mu m} }$ and $\mathrm{ [S\, {\small II}] \, 6716}$ Å forbidden lines, the $\mathrm{[O\, {\small I}]\, 6300}$ Å airglow line, and Hα 6563 Å emission. We simulate (80 ∼ 200 km s−1) dense (∼105 cm−3) outflows expanding into a stationary ambient medium. In the case of an atomic wind interacting with an atomic medium, a decelerating advancing turbulent shell thickens with time. This contrasts with all other cases where a shell fragments into a multitude of cometary-shaped protrusions with weak oblique shocks as the main source of gas excitation. We find that the atomic wind-ambient simulation leads to considerably higher excitation, stronger peak and integrated atomic emission as the nebula expands. The weaker emission when one component is molecular is due to the shell fragmentation into fingers so that the shock surface area is increased and oblique shocks are prevalent. Position-velocity diagrams indicate that the atomic-wind model may be most easy to distinguish with more emission at higher radial velocities. With post-AGB winds and shells often highly obscured and the multitude of configurations that are observed, this study suggests and motivates selection criteria for new surveys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.