Abstract

In this work, a numerical study has been performed to simulate the unsteady fluid flow and heat transfer in a transonic high-pressure turbine stage. The main objective of this study is to understand the unsteady flow field and heat transfer in a single transonic turbine stage using an unsteady structured Navier-Stokes solver. For the time accurate computation, a fully implicit time discretization, dual-time stepping, is performed. The results of the CFD simulations are compared with experimental heat transfer and aerodynamic results available for the so-called MT1 turbine stage. The predicted heat transfer and static pressure distributions show reasonable agreement with experimental data. In particular, the results show significant fluctuations in heat transfer and pressure at midspan on the rotor blade, and that the rotor has a limited influence on the heat transfer to the NGV at mid span.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.